Correlation-induced single-flux-quantum penetration in quantum rings
نویسندگان
چکیده
منابع مشابه
Effect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملQuantum physics in quantum rings
T he symmetry of a ring system is crucial for classical and quantum effects. Mathematically speaking a ring is a nonsingly connected geometry. In quantum mechanics the ring symmetry of the benzene molecule gives rise to its delocalized electronic states [1]. In ring geometries strongly connected to external leads the electron wave packets can take two different paths around the ring which gives...
متن کاملeffect of asymmetric quantum dot rings in electron transport through a quantum wire
the electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting hamiltonian anderson tunneling method. in this paper we concentrate on the configuration of the quantum dot rings. we show that the asymmetric structure of qd-scatter system strongly influences the amplitude an...
متن کاملMagnetoplasmons in quantum rings
We have studied the structure and dipole charge density response of nanorings as a function of the magnetic field using local-spin density functional theory. Two small rings consisting of 12 and 22 electrons confined by a positively charged background are used to represent the cases of a narrow and a wide ring. The results are qualitatively compared with experimental data existing on microrings...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Physics
سال: 2010
ISSN: 1745-2473,1745-2481
DOI: 10.1038/nphys1517